Inertial sensors carried by buoys, such as accelerometers, are widely used in wave characteristics measurement. Traditional methods usually employ numerical integration on the accelerate data for wave height, where the "drifting" errors are intractable. In this paper we propose a novel method to predict wave height and period using machine learning approach, specially a convolutional neural network. The end-to-end 1D convolutional neural network named WaveNet predicts wave height and period from the raw acceleration data directly. We designed a simple device to simulate the motion of the buoy in the wave, and used it to collect data for training and testing our model. The results of the proposed method were compared with traditional numerical integration method and found that the proposed model outperforms existing method in outputting more accurate wave height and period.
CITATION STYLE
Liu, T., Zhang, Y., Qi, L., Dong, J., Lv, M., & Wen, Q. (2019). WaveNet: Learning to predict wave height and period from accelerometer data using convolutional neural network. In IOP Conference Series: Earth and Environmental Science (Vol. 369). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/369/1/012001
Mendeley helps you to discover research relevant for your work.