A multiwell disc appliance used to deliver quantifiable accelerations and shear stresses at sonic frequencies

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

To mimic in vivo vibration of vocal fold cells, we studied the controllability and range of frequency, acceleration, duration, and shear stress in a new bioreactor attachment. The custom multiwell disc appliance fits into a commercially built rheometer, together termed a torsional rheometer bioreactor (TRB). Previous attachments to the TRB were capable of 50-100 Hz vibrations at relatively high strains but were limited to single-sample experiments. The TRB-multiwell disc system accommodates 20 samples in partially fluid-filled wells in an aseptic environment delivering three different acceleration conditions to different samples simultaneously. Frequency and amplitude used to calculate acceleration along with duration and shear stress were controllable and quantifiable using a combination of built-in rheometer sensors, manufacturer software, and smooth particle hydrodynamics (SPH) simulations. Computed shear stresses at the well bottom using SPH in two and three dimensions were verified with analytical approximations. Results demonstrate capabilities of the TRB-multiwell disc system that, when combined with computational modeling, provide quantifiable vibration parameters covering frequencies 0.01-250 Hz, accelerations of 0.02-300 m/s2, and shear stresses of 0.01-1.4 Pa. It is well-suited for studying cell function underlying vocal fold lamina propria homeostasis, inflammation, and wound healing under differential vibration conditions.

Cite

CITATION STYLE

APA

Klemuk, S. A., Vigmostad, S., Endapally, K., Wagner, A. P., & Titze, I. R. (2014). A multiwell disc appliance used to deliver quantifiable accelerations and shear stresses at sonic frequencies. Processes, 2(1), 71–88. https://doi.org/10.3390/pr2010071

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free