Seizure Susceptibility and Sleep Disturbance as Biomarkers of Epileptogenesis after Experimental TBI

7Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Objectives: We investigated whether seizure susceptibility increases over weeks–months after experimental traumatic brain injury (TBI), and whether seizure susceptibility in rats predicts the development of post-traumatic epilepsy (PTE) or epileptiform activity. We further investigated whether rats develop chronic sleep disturbance after TBI, and whether sleep disturbance parame-ters—alone or in combination with pentylenetetrazol (PTZ) test parameters—could serve as novel biomarkers for the development of post-traumatic epileptogenesis. Methods: TBI was induced in adult male Sprague-Dawley rats with lateral fluid-percussion injury. Sham-operated experimental controls underwent craniectomy without exposure to an impact force. Seizure susceptibility was tested with a PTZ test (30 mg/kg, intraperitoneally) on day (D) 30, D60, D90, and D180 after TBI (n = 28) or sham operation (n = 16) under video electroencephalogram (vEEG). In the 7th post-injury month, rats underwent continuous vEEG monitoring to detect spontaneous seizures and assess sleep disturbances. At the end of the experiments, rats were perfused for brain histology. Results: In the TBI group, the percentage of rats with PTZ-induced seizures increased over time (adjusted p < 0.05 compared with D30). Combinations of three PTZ test parameters (latency to the first epilep-tiform discharge (ED), number of EDs, and number of PTZ-induced seizures) survived the leave-one-out validation for differentiating rats with or without epileptiform activity, indicating an area under the receiver operating curve (AUC) of 0.743 (95% CI 0.472–0.992, p = 0.05) with a misclassifi-cation rate of 36% on D90, and an AUC of 0.752 (95% CI 0.483–0.929, p < 0.05) with a misclassification rate of 32% on D180. Sleep analysis revealed that the number of transitions to N3 or rapid eye movement (REM) sleep, along with the total number of transitions, was increased in the TBI group during the lights-on period (all p < 0.05). The sleep fragmentation index during the lights-on period was greater in the TBI rats than in sham-operated rats (p < 0.05). A combination of sleep parameters showed promise as diagnostic biomarkers of prior TBI, with an AUC of 0.792 (95% CI 0.549–0.934, p < 0.01) and a misclassification rate of 28%. Rats with epilepsy or any epileptiform activity had more transitions from N3 to the awake stage (p < 0.05), and the number of N3–awake transitions differentiated rats with or without epileptiform activity, with an AUC of 0.857 (95% CI 0.651–1.063, p < 0.01). Combining sleep parameters with PTZ parameters did not improve the biomarker perfor-mance. Significance: This is the first attempt to monitor the evolution of seizure susceptibility over months in a well-described rat model of PTE. Our data suggest that assessment of seizure susceptibility and sleep disturbance can provide diagnostic biomarkers of prior TBI and prognostic bi-omarkers of post-traumatic epileptogenesis.

Cite

CITATION STYLE

APA

Andrade, P., Lara-Valderrábano, L., Manninen, E., Ciszek, R., Tapiala, J., Ndode-Ekane, X. E., & Pitkänen, A. (2022). Seizure Susceptibility and Sleep Disturbance as Biomarkers of Epileptogenesis after Experimental TBI. Biomedicines, 10(5). https://doi.org/10.3390/biomedicines10051138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free