Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2

26Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

The triple oxygen isotope signature Δ17O in atmospheric CO2, also known as its “17O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO2 by vegetation through photosynthesis). We present the first global 3-D model simulations for Δ17O in atmospheric CO2 together with a detailed model description and sensitivity analyses. In our 3-D model framework we include the stratospheric source of Δ17O in CO2 and the surface sinks from vegetation, soils, ocean, biomass burning, and fossil fuel combustion. The effect of oxidation of atmospheric CO on Δ17O in CO2 is also included in our model. We estimate that the global mean Δ17O (defined as Δ17O = ln(δ17O+1)−𝜆λRL · ln(δ18O+1) with λRL = 0.5229) of CO2 in the lowest 500 m of the atmosphere is 39.6 per meg, which is ∼20 per meg lower than estimates from existing box models. We compare our model results with a measured stratospheric Δ17O in CO2 profile from Sodankylä (Finland), which shows good agreement. In addition, we compare our model results with tropospheric measurements of Δ17O in CO2 from Göttingen (Germany) and Taipei (Taiwan), which shows some agreement but we also find substantial discrepancies that are subsequently discussed. Finally, we show model results for Zotino (Russia), Mauna Loa (United States), Manaus (Brazil), and South Pole, which we propose as possible locations for future measurements of Δ17O in tropospheric CO2 that can help to further increase our understanding of the global budget of Δ17O in atmospheric CO2.

Cite

CITATION STYLE

APA

Koren, G., Schneider, L., van der Velde, I. R., van Schaik, E., Gromov, S. S., Adnew, G. A., … Peters, W. (2019). Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2. Journal of Geophysical Research: Atmospheres, 124(15), 8808–8836. https://doi.org/10.1029/2019JD030387

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free