Zinc is an essential trace element required for enzymatic activity and for maintaining the conformation of many transcription factors; thus, zinc homeostasis is tightly regulated. Although zinc affects several signaling molecules and may act as a neurotransmitter, it remains unknown whether zinc acts as an intracellular second messenger capable of transducing extracellular stimuli into intracellular signaling events. In this study, we report that the cross-linking of the high affinity immunoglobin E receptor (Fc? receptor I [FcεRI]) induced a release of free zinc from the perinuclear area, including the endoplasmic reticulum in mast cells, a phenomenon we call the zinc wave. The zinc wave was dependent on calcium influx and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase activation. The results suggest that the zinc wave is involved in intracellular signaling events, at least in part by modulating the duration and strength of FcεRI-mediated signaling. Collectively, our findings indicate that zinc is a novel intracellular second messenger. © The Rockefeller University Press.
CITATION STYLE
Yamasaki, S., Sakata-Sogawa, K., Hasegawa, A., Suzuki, T., Kabu, K., Sato, E., … Hirano, T. (2007). Zinc is a novel intracellular second messenger. Journal of Cell Biology, 177(4), 637–645. https://doi.org/10.1083/jcb.200702081
Mendeley helps you to discover research relevant for your work.