Background: Th17 cells are a newly discovered subset of CD4+ T cells known as key participants in various immune responses and inflammatory conditions including autoimmune diseases. Mi(cro)RNAs are a family of non-coding RNAs that regulate numerous critical immune functions. Immuno-miRNAs modulate cell biological processes in T cells, such as differentiation and function of Th17 cells. The aim of the present study is to investigate the expression of miR-9-5p, miR-193b-3p, and autoimmunity-related genes during human Th17 cells differentiation. Methods: Human naïve CD4+ T cells were purified from peripheral blood mononuclear cells (PBMCs) by magnetic cell sorting system (MACS) and their purity was checked by flow-cytometric analysis. Naïve CD4+ T cells were cultured under Th17-polarizing condition for 6 days. IL- 17 secretion was determined by means of enzyme-linked immunosorbent assay (ELISA). Next, the expression levels of miRNAs and putative targets genes were assessed by qRT-PCR at different time points of differentiation. Results: Our result showed dramatic downregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes during human Th17 differentiation. Polarization also had a significant inducible effect on the expression of miR-9 and miR-193b over differentiation of human Th17 cells. According to our results, miR-9-5p and miR-193b-3p may contribute to Th17 differentiation probably by inhibiting the expression of negative regulators of Th17 differentiation. Conclusion: This study confirmed deregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes in Th17 differentiation process and introduced miR-9 and miR-193b as Th17 cell-associated miRNAs, making them good candidates for further investigations.
CITATION STYLE
Shirani, F., Baghi, M., Rostamian Delavar, M., Shoaraye Nejati, A., Eshaghiyan, A., Nasr-Esfahani, M. H., … Ghaedi, K. (2020). Upregulation of miR-9 and miR-193b over human Th17 cell differentiation. Molecular Genetics and Genomic Medicine, 8(12). https://doi.org/10.1002/mgg3.1538
Mendeley helps you to discover research relevant for your work.