Chinese hamster ovary (CHO) cells strain D422, which has one copy of the adenine phosphoribosyl transferase (APRT) gene, were permeabilized by electroporation and treated with 5-methyl deoxycytidine triphosphate. Cells with a silenced APRT gene were selected on 2, 6-diaminopurine. Colonies were isolated and shown to be reactivated to APRT+ by 5-aza-cytidine and by selection in medium containing adenine, aminopterin and thymidine. Genomic DNA was prepared from eight isolates of independent origin and subjected to bisulphite treatment. This deaminates cytosine to uracil in single-stranded DNA but does not deaminate 5-methyl cytosine. PCR, cloning and sequencing revealed the methylation pattern of CpG doublets in the promoter region of the APRT- gene, whereas the active APRT gene had nonmethylated DNA. CHO strain K1, which has two copies of the APRT+ gene, could also be silenced by the same procedure but at a lower frequency. The availability of the 5- methyl dCTP-induced silencing, 5-aza-CR and a standard mutagen, ethyl methane sulphonate, makes it possible to follow concomitantly the inheritance of active, mutant or silenced gene copies. This analysis demonstrates 'dual inheritance' at the APRT locus in CHO cells.
CITATION STYLE
Paulin, R. P., Ho, T., Balzer, H. J., & Holliday, R. (1998). Gene silencing by DNA methylation and dual inheritance in Chinese hamster ovary cells. Genetics, 149(2), 1081–1088. https://doi.org/10.1093/genetics/149.2.1081
Mendeley helps you to discover research relevant for your work.