An overview of γ-hydroxybutyrate catabolism: The role of the cytosolic NADP+-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway

50Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Two enzymes have been found which catalyze the initial step in the catabolism of GHB. The oxidation of GHB to SSA, catalyzed by both of these enzymes, is coupled to the reduction of an oxoacid. In the case of the mitochondrial transhydrogenase, the coupling is obligatory. Although coupling is not obligatory for the GHB dehydrogenase, the stimulation provided by the coupled reaction, and the nature of the kinetics of the uncoupled reaction, may not only allow the reaction to proceed, but may provide a means of regulating the rate of the reaction under in vivo conditions. Since the oxidation of GHB to SSA is the rate limiting step in the overall catabolic pathway (the rate of conversion of GHB to SSA proceeds at approximately one one thousandth of the rate at which SSA is oxidized to succinate by SSA dehydrogenase (30)), factors which regulate the rate of either or both of these enzymes will, in turn, influence tissue levels of endogenous GHB as well as the duration and magnitude of the physiological effect of a dose of GHB. © 1991 Plenum Publishing Corporation.

Cite

CITATION STYLE

APA

Kaufman, E. E., & Nelson, T. (1991). An overview of γ-hydroxybutyrate catabolism: The role of the cytosolic NADP+-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway. Neurochemical Research, 16(9), 965–974. https://doi.org/10.1007/BF00965839

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free