This is the first study to conduct the flash sintering of 3 mol% yttria-stabilized zirconia (3YSZ) ceramics at room temperature (25 °C) under a strong electric field, larger than 1 kV/cm. At the standard atmospheric pressure (101 kPa), the probability of successful sintering is approximately half of that at low atmospheric pressure, lower than 80 kPa. The success of the proposed flash sintering process was determined based on the high electric arc performance at different atmospheric pressures ranging from 20 to 100 kPa. The 3YSZ samples achieved a maximum relative density of 99.5% with a grain size of ∼200 nm. The results showed that as the atmospheric pressure decreases, the onset electric field of flash sintering decreases, corresponding to the empirical formula of the flashover voltage. Moreover, flash sintering was found to be triggered by the surface flashover of ceramic samples, and the electric arc on the sample surfaces floated upward before complete flash sintering at overly high pressures, resulting in the failure of flash sintering. This study reveals a new method for the facile preparation of flash-sintered ceramics at room temperature, which will promote the application of flash sintering in the ceramic industry.[Figure not available: see fulltext.]
CITATION STYLE
Zhu, Y., Zhou, H., Huang, R., Yan, N., Wang, X., Liu, G., & Jia, Z. (2022). Gas-discharge induced flash sintering of YSZ ceramics at room temperature. Journal of Advanced Ceramics, 11(4), 603–614. https://doi.org/10.1007/s40145-021-0561-3
Mendeley helps you to discover research relevant for your work.