Nonstructural protein 1 (Nsp1) of SARS-CoV-2 inhibits host cell translation through an interaction between its C-terminal domain and the 40S ribosome. The N-terminal domain (NTD) of Nsp1 is a target of recurring deletions, some of which are associated with altered COVID-19 disease progression. Here, we characterize the efficiency of translational inhibition by clinically observed Nsp1 deletion variants. We show that a frequent deletion of residues 79–89 severely reduces the ability of Nsp1 to inhibit translation while not abrogating Nsp1 binding to the 40S. Notably, while the SARS-CoV-2 5′ untranslated region enhances translation of mRNA, it does not protect from Nsp1-mediated inhibition. Finally, thermal stability measurements and structure predictions reveal a correlation between stability of the NTD and the efficiency of translation inhibition.
CITATION STYLE
Kumar, P., Schexnaydre, E., Rafie, K., Kurata, T., Terenin, I., Hauryliuk, V., & Carlson, L. A. (2022). Clinically observed deletions in SARS-CoV-2 Nsp1 affect its stability and ability to inhibit translation. FEBS Letters, 596(9), 1203–1213. https://doi.org/10.1002/1873-3468.14354
Mendeley helps you to discover research relevant for your work.