Potential energy surfaces for high-energy N + O2collisions

29Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Potential energy surfaces for high-energy collisions between an oxygen molecule and a nitrogen atom are useful for modeling chemical dynamics in shock waves. In the present work, we present doublet, quartet, and sextet potential energy surfaces that are suitable for studying collisions of O2(3ςg-) with N(4S) in the electronically adiabatic approximation. Two sets of surfaces are developed, one using neural networks (NNs) with permutationally invariant polynomials (PIPs) and one with the least-squares many-body (MB) method, where a two-body part is an accurate diatomic potential and the three-body part is expressed with connected PIPs in mixed-exponential-Gaussian bond order variables (MEGs). We find, using the same dataset for both fits, that the fitting performance of the PIP-NN method is significantly better than that of the MB-PIP-MEG method, even though the MB-PIP-MEG fit uses a higher-order PIP than those used in previous MB-PIP-MEG fits of related systems (such as N4 and N2O2). However, the evaluation of the PIP-NN fit in trajectory calculations requires about 5 times more computer time than is required for the MB-PIP-MEG fit.

Cite

CITATION STYLE

APA

Varga, Z., Liu, Y., Li, J., Paukku, Y., Guo, H., & Truhlar, D. G. (2021). Potential energy surfaces for high-energy N + O2collisions. Journal of Chemical Physics, 154(8). https://doi.org/10.1063/5.0039771

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free