Low-field electron mobility evaluation in silicon nanowire transistors using an extended hydrodynamic model

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Silicon nanowires (SiNWs) are quasi-one-dimensional structures in which electrons are spatially confined in two directions and they are free to move in the orthogonal direction. The subband decomposition and the electrostatic force field are obtained by solving the Schrödinger–Poisson coupled system. The electron transport along the free direction can be tackled using a hydrodynamic model, formulated by taking the moments of the multisubband Boltzmann equation. We shall introduce an extended hydrodynamic model where closure relations for the fluxes and production terms have been obtained by means of the Maximum Entropy Principle of Extended Thermodynamics, and in which the main scattering mechanisms such as those with phonons and surface roughness have been considered. By using this model, the low-field mobility of a Gate-All-Around SiNW transistor has been evaluated.

Cite

CITATION STYLE

APA

Muscato, O., Castiglione, T., Di Stefano, V., & Coco, A. (2018). Low-field electron mobility evaluation in silicon nanowire transistors using an extended hydrodynamic model. Journal of Mathematics in Industry, 8(1). https://doi.org/10.1186/s13362-018-0056-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free