Background: Visual field defects caused by injury to Meyer's loop (ML) are common in patients undergoing anterior temporal lobectomy during epilepsy surgery. Evaluation of the anatomical shapes of the curving, fanning and sharp angles of ML to guide surgeries is important but still challenging for diffusion tensor imaging. We present an advanced diffusion data-based ML atlas and labeling protocol to reproduce anatomical features in individuals within a short time. Methods: Thirty Massachusetts General Hospital-Human Connectome Project (MGH-HCP) diffusion datasets (ultra-high magnetic gradient & 512 directions) were warped to standard space. The resulting fibers were projected together to create an atlas. The anatomical features and the tractography correspondence rates were evaluated in 30 MGH-HCP individuals and local diffusion spectrum imaging data (eight healthy subjects and six hippocampal sclerosis patients). Results: In the atlas, features of curves, sharp angles and fanning shapes were adequately reproduced. The distances from the anterior tip of the temporal lobe to the anterior ridge of Meyer's loop were 23.1 mm and 26.41 mm on the left and right sides, respectively. The upper and lower divisions of the ML were revealed to be twisting. Eighty-eight labeled sides were achieved, and the correspondence rates were 87.44% ± 6.92, 80.81 ± 10.62 and 72.83% ± 14.03% for MGH-HCP individuals, DSI-healthy individuals and DSI-patients, respectively. Conclusion: Atlas-labeled ML is comparable to high angular resolution tractography in healthy or hippocampal sclerosis patients. Therefore, rapid identification of the ML location with a single modality of T1 is practical. This protocol would facilitate functional studies and visual field protection during neurosurgery.
CITATION STYLE
Shan, Y. Z., Wang, Z. M., Fan, X. T., Zhang, H. Q., Ren, L. K., Wei, P. H., & Zhao, G. G. (2019). Automatic labeling of the fanning and curving shape of Meyer’s loop for epilepsy surgery: an atlas extracted from high-definition fiber tractography. BMC Neurology, 19(1). https://doi.org/10.1186/s12883-019-1537-6
Mendeley helps you to discover research relevant for your work.