Given its variety of properties, including conductivity and slow corrosion, the industrial uses for gold are increasing dramatically. This means that greater amounts of gold are being released into the environment and that a biological approach to recycling gold is of great interest. Lysinibacillus sphaericus, a bacterium capable of metal accumulation inside the cell and adsorption in the external surface, was encapsulated in an alginate matrix to improve the capture of gold from aqueous media. In this study, L. sphaericus CBAM5 proved to have the greatest potential compared to other strains and, following its encapsulation, the efficiency for the removal of the precious metal, at a concentration of 60 ppm, was 100% after three hours of exposure. It was identified that the alginate spheres with bacteria could also be reused. In fact, an efficiency of 60% was retained after three cycles of utilization. Thus, alginate acts as an adequate immobilization matrix for bacteria as a highly effective gold capture mechanism, which also shows great potential as an alternative for biotechnological applications.
CITATION STYLE
Páez-Vélez, C., Rivas, R. E., & Dussán, J. (2019). Enhanced gold biosorption of Lysinibacillus sphaericus CBAM5 by encapsulation of bacteria in an alginate matrix. Metals, 9(8). https://doi.org/10.3390/met9080818
Mendeley helps you to discover research relevant for your work.