Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular “cargo” particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.

Cite

CITATION STYLE

APA

Yu, X., & Zhu, L. (2024). Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. International Journal of Nanomedicine. Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S442768

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free