Long Non-Coding RNA CYP4B1-PS1-001 Inhibits Proliferation and Fibrosis in Diabetic Nephropathy by Interacting with Nucleolin

37Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background/Aims: Our previous studies demonstrated that a novel long non-coding RNA, CYP4B1-PS1-001, was significantly downregulated in early diabetic nephropathy in vivo and in vitro, and CYP4B1-PS1-001 overexpression could inhibit the proliferation and fibrosis of mouse mesangial cells (MMCs). However, the underlying mechanism of the CYP4B1-PS1-001-mediated regulation of proliferation and fibrosis in diabetic nephropathy remains undetermined. Methods: RNA-protein pull-down assay, RNA-binding protein immunoprecipitation, and mass spectrometry were used to investigate CYP4B1-PS1-001 interacted with the upregulated protein nucleolin (NCL). siRNA method was applied to knockdown NCL in MMCs, the interaction between CYP4B1-PS1-001 and NCL were determined by Western blot analysis and RT-qPCR. The effect of CYP4B1-PS1-001 in the regulation of NCL was detected by cycloheximide (CHX) and ubiquitination assays. Results: We found that CYP4B1-PS1-001 interacts with NCL, and CYP4B1-PS1-001 inhibits the proliferation and fibrosis of MMCs depending on interaction with NCL. Furthermore, degradation of CYP4B1-PS1-001-associated NCL was mediated by a ubiquitin proteasome-dependent pathway. Conclusion: Our study provides evidence that CYP4B1-PS1-001 regulates the ubiquitination and degradation of NCL and thereby plays a critical role in the proliferation and fibrosis of MMCs, indicating that CYP4B1-PS1-001 and NCL may be promising prognostic biomarkers and molecular targets for the treatment of diabetic nephropathy.

Cite

CITATION STYLE

APA

Wang, S., Chen, X., Wang, M., Yao, D., Chen, T., Yan, Q., & Lu, W. (2018). Long Non-Coding RNA CYP4B1-PS1-001 Inhibits Proliferation and Fibrosis in Diabetic Nephropathy by Interacting with Nucleolin. Cellular Physiology and Biochemistry, 49(6), 2174–2187. https://doi.org/10.1159/000493821

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free