This paper focuses on the train routing problem at a high-speed railway station to improve the railway station capacity and operational efficiency. We first describe a node-based railway network by defining the turnout node and the arrival-departure line node for the mathematical formulation. Both considering potential collisions of trains and convenience for passengers' transfer in the station, the train routing problem at a high-speed railway station is formulated as a multiobjective mixed integer nonlinear programming model, which aims to minimize trains' departure time deviations and total occupation time of all tracks and keep the most balanced utilization of arrival-departure lines. Since massive decision variables for the large-scale real-life train routing problem exist, a fast heuristic algorithm is proposed based on the tabu search to solve it. Two sets of numerical experiments are implemented to demonstrate the rationality and effectiveness of proposed method: the small-scale case confirms the accuracy of the algorithm; the resulting heuristic proved able to obtain excellent solution quality within 254 seconds of computing time on a standard personal computer for the large-scale station involving up to 17 arrival-departure lines and 46 trains.
CITATION STYLE
Feng, Z., Cao, C., Liu, Y., & Zhou, Y. (2018). A Multiobjective Optimization for Train Routing at the High-Speed Railway Station Based on Tabu Search Algorithm. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/8394397
Mendeley helps you to discover research relevant for your work.