For the purposes of strength, military equipment camouflage, and protecting the health of organisms, electromagnetic wave absorbing materials have received a lot of attention and are widely studied. In addition to having a strong absorption intensity and a wide effective absorption bandwidth, materials that are lightweight, thermally stable, and antioxidative are also highly desirable. In this study, we fabricated core–shell structured NiS2 @MoS2 nanospheres anchored on reduced graphene oxide (rGO) nanosheets (NiS2 @MoS2/rGO) by a simple two-step hydrothermal method. The combination ratio was adjusted to achieve proper impedance matching. The electromagnetic parameters and the absorption performance were investigated in detail. A composite loaded with 30 wt.% of the sample achieved a minimum reflection loss (RL) value of −29.75 dB and the effective bandwidth (RL value of less than −10 dB) ranged from 4.95 GHz to 18.00 GHz (13.05 GHz), with a thickness ranging from 1.5 mm to 4.0 mm. This study proved that the generated significant interfacial polarization and synergetic interaction between components can result in NiS2 @MoS2/rGO composites with enhanced electromagnetic absorption performance.
CITATION STYLE
Zhang, Z., Lv, X., Chen, Y., Zhang, P., Sui, M., Liu, H., & Sun, X. (2019). NiS2 @MoS2 nanospheres anchored on reduced graphene oxide: A novel ternary heterostructure with enhanced electromagnetic absorption property. Nanomaterials, 9(2). https://doi.org/10.3390/nano9020292
Mendeley helps you to discover research relevant for your work.