We have used photon pair correlations generated via spontaneous parametric downconversion (SPDC) to measure the fluorescence lifetime of the organic dye rhodamine 6 G, demonstrating that fluorescence lifetime measurements can be achieved using a continuous wave (CW) laser, without pulsed or modulated lasers. Our entangled photon method, quantum fluorescence lifetime (Q-FL) measurements, uses one photon to excite fluorescence and the resulting fluorescence photon is timed and referenced to the arrival time of the other entangled photon. Thus, we can exploit the short timescale of photon pair correlations to conduct experiments that are typically carried out with pulsed lasers and we show that the inherent timing of the photons is fast enough to resolve the nanosecond scale fluorescence lifetime of the sample. This measurement paves the way towards using the time correlations of entangled photons for fluorescence imaging; capitalizing on the presence of fast, sub-100 ps correlations that have not been demonstrated classically.
CITATION STYLE
Eshun, A., Yi, X., Wilson, A., Jeppson, S., Yoo, J. H., Kiannejad, S., … Laurence, T. (2023). Fluorescence lifetime measurements using photon pair correlations generated via spontaneous parametric down conversion (SPDC). Optics Express, 31(16), 26935. https://doi.org/10.1364/oe.494744
Mendeley helps you to discover research relevant for your work.