Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information

33Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Protein function is mediated by different amino acid residues, both their positions and types, in a protein sequence. Some amino acids are responsible for the stability or overall shape of the protein, playing an indirect role in protein function. Others play a functionally important role as part of active or binding sites of the protein. For a given protein sequence, the residues and their degree of functional importance can be thought of as a signature representing the function of the protein. We have developed a combination of knowledge- and biophysics-based function prediction approaches to elucidate the relationships between the structural and the functional roles of individual residues and positions. Such a meta-functional signature (MFS), which is a collection of continuous values representing the functional significance of each residue in a protein, may be used to study proteins of known function in greater detail and to aid in experimental characterization of proteins of unknown function. We demonstrate the superior performance of MFS in predicting protein functional sites and also present four real-world examples to apply MFS in a wide range of settings to elucidate protein sequence-structure-function relationships. Our results indicate that the MFS approach, which can combine multiple sources of information and also give biological interpretation to each component, greatly facilitates the understanding and characterization of protein function. © 2008 Wang et al.

Cite

CITATION STYLE

APA

Wang, K., Horst, J. A., Cheng, G., Nickle, D. C., & Samudrala, R. (2008). Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information. PLoS Computational Biology, 4(9). https://doi.org/10.1371/journal.pcbi.1000181

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free