Room-temperature sub-band gap optoelectronic response of hyperdoped silicon

211Citations
Citations of this article
141Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Room-temperature infrared sub-band gap photoresponse in silicon is of interest for telecommunications, imaging and solid-state energy conversion. Attempts to induce infrared response in silicon largely centred on combining the modification of its electronic structure via controlled defect formation (for example, vacancies and dislocations) with waveguide coupling, or integration with foreign materials. Impurity-mediated sub-band gap photoresponse in silicon is an alternative to these methods but it has only been studied at low temperature. Here we demonstrate impurity-mediated room-temperature sub-band gap photoresponse in single-crystal silicon-based planar photodiodes. A rapid and repeatable laser-based hyperdoping method incorporates supersaturated gold dopant concentrations on the order of 1020 cm -3 into a single-crystal surface layer ∼150 nm thin. We demonstrate room-temperature silicon spectral response extending to wavelengths as long as 2,200 nm, with response increasing monotonically with supersaturated gold dopant concentration. This hyperdoping approach offers a possible path to tunable, broadband infrared imaging using silicon at room temperature.© 2014 Macmillan Publishers Limited.

Cite

CITATION STYLE

APA

Mailoa, J. P., Akey, A. J., Simmons, C. B., Hutchinson, D., Mathews, J., Sullivan, J. T., … Buonassisi, T. (2014). Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nature Communications, 5. https://doi.org/10.1038/ncomms4011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free