Cellular Inhibitors of Apoptosis 1 and 2 (c-IAP1 and c-IAP2) are ubiquitin protein ligases (E3s) that constitutively ubiquitinate and induce proteasomal-mediated degradation of NF-κB Inducing Kinase (NIK) and repress non-canonical NF-κB activation. Mice expressing an E3-inactive c-IAP2 mutant (c-IAP2H570A) have constitutive activation of non-canonical NF-κB, resulting in B cell hyperplasia and T cell costimulation-independence. If, and if so to what extent, c-IAP1 and c-IAP2 are redundant in NF-κB regulation in these mice is not known. Here we have generated mice expressing a mutant c-IAP1 that lacks E3 activity (c-IAP1H582A). These mice were phenotypically normal and did not have constitutive NF-κB activation in B cells or MEFs. siRNA-mediated knockdown of c-IAP2 showed that accumulated c-IAP2, resulting from lack of c-IAP1-dependent degradation, compensated for absent c-IAP1 E3 activity. Surprisingly, c-IAP1H582A T cells had a lower p100/p52 ratio than wild type T cells, and in the absence of costimulation proliferated to a degree intermediate between wild type and c-IAP2H570A T cells. Therefore, although c-IAP1 and c-IAP2 both can repress constitutive NF-κB activation, the relative importance of each varies according to cell type.
CITATION STYLE
Giardino Torchia, M. L., Conze, D. B., & Ashwell, J. D. (2013). c-IAP1 and c-IAP2 Redundancy Differs between T and B Cells. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0066161
Mendeley helps you to discover research relevant for your work.