Improved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface-Modified ZSM-5

20Citations
Citations of this article
78Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1-2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature-programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu-ZSM-5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.

Cite

CITATION STYLE

APA

Sheppard, T., Daly, H., Goguet, A., & Thompson, J. M. (2016). Improved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface-Modified ZSM-5. ChemCatChem, 8(3), 560–570. https://doi.org/10.1002/cctc.201500980

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free