Contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during KIR channel and Na+/K+-ATPase inhibition

20Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Sympathetic vasoconstriction in contracting skeletal muscle is blunted relative to that which occurs in resting tissue; however, the mechanisms underlying this 'functional sympatholysis' remain unclear in humans. We tested the hypothesis that α1-adrenergic vasoconstriction is augmented during exercise following inhibition of inwardly rectifying potassium (KIR) channels and Na+/K+-ATPase (BaCl2 + ouabain). In young healthy humans, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) at rest, during steady-state stimulus conditions (pre-phenylephrine), and after 2 min of phenylephrine (PE; an α1-adrenoceptor agonist) infusion via brachial artery catheter in response to two different stimuli: moderate (15% maximal voluntary contraction) rhythmic handgrip exercise or adenosine infusion. In Protocol 1 (n = 11 subjects) a total of six trials were performed in three conditions: control (saline), combined enzymatic inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis (l-NMMA + ketorolac) and combined inhibition of NO, PGs, KIR channels and Na+/K+-ATPase (l-NMMA + ketorolac + BaCl2 + ouabain). In Protocol 2 (n = 6) a total of four trials were performed in two conditions: control (saline), and combined KIR channel and Na+/K+-ATPase inhibition. All trials occurred after local β-adrenoceptor blockade (propranolol). PE-mediated vasoconstriction was calculated (%ΔFVC) in each condition. Contrary to our hypothesis, despite attenuated exercise hyperaemia of ∼30%, inhibition of KIR channels and Na+/K+-ATPase, combined with inhibition of NO and PGs (Protocol 1) or alone (Protocol 2) did not enhance α1-mediated vasoconstriction during exercise (Protocol 1: -27 ± 3%; P = 0.2 vs. control, P = 0.4 vs. l-NMMA + ketorolac; Protocol 2: -21 ± 7%; P = 0.9 vs. control). Thus, contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during combined KIR channel and Na+/K+-ATPase inhibition.

Cite

CITATION STYLE

APA

Crecelius, A. R., Kirby, B. S., Hearon, C. M., Luckasen, G. J., Larson, D. G., & Dinenno, F. A. (2015). Contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during KIR channel and Na+/K+-ATPase inhibition. Journal of Physiology, 593(12), 2735–2751. https://doi.org/10.1113/JP270461

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free