The fermentation of cellulose by monocultures of Acetivibrio cellulolyticus and cocultures of A. cellulolyticus-Methanosarcina barkeri, A. cellulolyticus-Desulfovibrio sp., and A. cellulolyticus-M. barkeri-Desulfovibrio sp. was studied. The monoculture produced ethanol, acetate, H 2 , and CO 2 . More acetate and less ethanol was formed by the cocultures than by the monoculture. Acetate was utilized by M. barkeri in coculture with A. cellulolyticus after a lag period, whereas ethanol was metabolized by the sulfate reducer only under conditions of low H 2 partial pressure, i.e., when cocultured with A. celluloyticus-M. barkeri or when grown together with the methanogen. Only the three-component culture carried out the rapid conversion of cellulose to CO 2 and methane. Furthermore, this culture hydrolyzed the most cellulose—85% of that initially present. This amount was increased to 90% by increasing the population of M. barkeri in the triculture. Methane production was also increased, and a quicker fermentation rate was achieved.
CITATION STYLE
Laube, V. M., & Martin, S. M. (1981). Conversion of Cellulose to Methane and Carbon Dioxide by Triculture of Acetivibrio cellulolyticus, Desulfovibrio sp., and Methanosarcina barkeri. Applied and Environmental Microbiology, 42(3), 413–420. https://doi.org/10.1128/aem.42.3.413-420.1981
Mendeley helps you to discover research relevant for your work.