Unified SVM algorithm based on LS-DC loss

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Over the past two decades, support vector machines (SVMs) have become a popular supervised machine learning model, and plenty of distinct algorithms are designed separately based on different KKT conditions of the SVM model for classification/regression with different losses, including convex and or nonconvex loss. In this paper, we propose an algorithm that can train different SVM models in a unified scheme. First, we introduce a definition of the least squares type of difference of convex loss (LS-DC) and show that the most commonly used losses in the SVM community are LS-DC loss or can be approximated by LS-DC loss. Based on the difference of convex algorithm (DCA), we then propose a unified algorithm called UniSVM which can solve the SVM model with any convex or nonconvex LS-DC loss, wherein only a vector is computed by the specifically chosen loss. UniSVM has a dominant advantage over all existing algorithms for training robust SVM models with nonconvex losses because it has a closed-form solution per iteration, while the existing algorithms always need to solve an L1SVM/L2SVM per iteration. Furthermore, by the low-rank approximation of the kernel matrix, UniSVM can solve large-scale nonlinear problems efficiently. To verify the efficacy and feasibility of the proposed algorithm, we perform many experiments on small artificial problems and large benchmark tasks both with and without outliers for classification and regression for comparison with state-of-the-art algorithms. The experimental results demonstrate that UniSVM can achieve comparable performance in less training time. The foremost advantage of UniSVM is that its core code in Matlab is less than 10 lines; hence, it can be easily grasped by users or researchers.

Cite

CITATION STYLE

APA

Zhou, S., & Zhou, W. (2023). Unified SVM algorithm based on LS-DC loss. Machine Learning, 112(8), 2975–3002. https://doi.org/10.1007/s10994-021-05996-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free