Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation

42Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, γ-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera ® (γ-Zein ER-accumulating domain) is the N-terminal proline-rich domain of γ-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera® domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera® domain. We demonstrated that Zera®-F1-V protein accumulation was at least 3× higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera® technology to induce protein body formation in non-seed tissues. Zera® expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera® technology to substantially increase the accumulation of value-added proteins in plants. © 2009 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Alvarez, M. L., Topal, E., Martin, F., & Cardineau, G. A. (2010). Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant Molecular Biology, 72(1–2), 75–89. https://doi.org/10.1007/s11103-009-9552-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free