A global carbon-isotope curve for the Late Triassic has the potential for global correlations and new insights on the complex and extreme environmental changes that took place in this time interval. We reconstruct the global δ13Corg profile for the late Norian, improving on sparse published data from North American successions that depict a "chaotic carbon-isotope interval" with rapid oscillations. In this context, we studied three sections outcropping in the Lagonegro Basin (southern Italy), originally located in the western Tethys. The carbon-isotope profiles show four negative excursions correlatable within the Lagonegro Basin. In particular, a negative shift close to the Norian/Rhaetian boundary (NRB) appears to correlate with that observed in the North American δ13Corg record, documenting the widespread occurrence of this carbon cycle perturbation. The 87Sr/86Sr and 187Os/188Os profiles suggest that this negative shift was possibly caused by emplacement of a large igneous province (LIP). The release of greenhouse gases (CO2) to the atmosphere- ocean system is supported by the 12C enrichment observed, as well as by the increase of atmospheric pCO2 inferred by different models for the Norian/Rhaetian interval. The trigger of this strongly perturbed interval could thus be enhanced magmatic activity that could be ascribed to the Angayucham province (Alaska, North America), a large oceanic plateau active ca. 214 ± 7 Ma, which has an estimated volume comparable to the Wrangellia and the Central Atlantic Magmatic Province (CAMP) LIPs. In fact, these three Late Triassic igneous provinces may have caused extreme environmental and climate changes during the Late Triassic.
CITATION STYLE
Zaffani, M., Agnini, C., Concheri, G., Godfrey, L., Katz, M., Maron, M., & Rigo, M. (2017). The Norian “chaotic carbon interval”: New clues from the δ13Corg record of the Lagonegro Basin (southern Italy). Geosphere, 13(4), 1–16. https://doi.org/10.1130/GES01459.1
Mendeley helps you to discover research relevant for your work.