Machine Learning-Based Dynamic Attribute Selection Technique for DDoS Attack Classification in IoT Networks

19Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The exponential growth of the Internet of Things (IoT) has led to the rapid expansion of interconnected systems, which has also increased the vulnerability of IoT devices to security threats such as distributed denial-of-service (DDoS) attacks. In this paper, we propose a machine learning pipeline that specifically addresses the issue of DDoS attack detection in IoT networks. Our approach comprises of (i) a processing module to prepare the data for further analysis, (ii) a dynamic attribute selection module that selects the most adaptive and productive features and reduces the training time, and (iii) a classification module to detect DDoS attacks. We evaluate the effectiveness of our approach using the CICI-IDS-2018 dataset and five powerful yet simple machine learning classifiers—Decision Tree (DT), Gaussian Naive Bayes, Logistic Regression (LR), K-Nearest Neighbor (KNN), and Random Forest (RF). Our results demonstrate that DT outperforms its counterparts and achieves up to 99.98% accuracy in just 0.18 s of CPU time. Our approach is simple, lightweight, and accurate for detecting DDoS attacks in IoT networks.

Cite

CITATION STYLE

APA

Ullah, S., Mahmood, Z., Ali, N., Ahmad, T., & Buriro, A. (2023). Machine Learning-Based Dynamic Attribute Selection Technique for DDoS Attack Classification in IoT Networks. Computers, 12(6). https://doi.org/10.3390/computers12060115

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free