In vitro and in vivo evidence of a decrease in vascular smooth muscle cell (SMC) migration induced by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been reported. When added to SMC cultures for 6 hours, the HMG-CoA reductase inhibitors fluvastatin, simvastatin, and pravastatin at 1 μmol/L resulted in a 48%, 50%, and 16% suppression, respectively, of human coronary SMC migration; these reductions mirrored the suppression in oxidative stress induced by 1 μmol/L lysophosphatidylcholine (lyso-PC) of 50%, 53% and 19%, respectively. The hydroxylated metabolites of fluvastatin, M2 and M3, at 1 μmol/L also suppressed the enhancement of SMC migration by 58% and 45% and the increase in oxidative stress induced by lyso-PC of 58% and 49%, respectively. Lyso-PC activated phospholipase D and protein kinase C (PKC), and this activation was also suppressed by HMG-CoA reductase inhibitors. The inhibition of phospholipase D and PKC was reversed by 100 μmol/L mevalonate, its isoprenoid derivative, farnesol, and geranylgeraniol but not by 10 μmol/L squalene. Antisense oligodeoxynucleotides at 5 μmol/L to PKC-α, but not those to the PKC-β isoform, suppressed the lyso-PC-mediated increases in SMC migration and oxidative stress. These findings suggest that HMG-CoA reductase inhibitors have direct antimigratory effects on the vascular wall beyond their effects on plasma lipids and that they might exert such antimigratory effects via suppression of the phospholipase D- and PKC (possibly PKC-α)-induced increase in oxidative stress, which might in turn prevent significant coronary artery disease.
CITATION STYLE
Yasunari, K., Maeda, K., Minami, M., & Yoshikawa, J. (2001). HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(6), 937–942. https://doi.org/10.1161/01.ATV.21.6.937
Mendeley helps you to discover research relevant for your work.