Conditionally Active, pH-Sensitive Immunoregulatory Antibodies Targeting VISTA and CTLA-4 Lead an Emerging Class of Cancer Therapeutics

6Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Immune checkpoints and other immunoregulatory targets can be difficult to precisely target due to expression on non-tumor immune cells critical to maintaining immune homeostasis in healthy tissues. On-target/off-tumor binding of therapeutics results in significant pharmacokinetic and pharmacodynamic problems. Target-mediated drug disposition (TMDD) significantly limits effective intratumoral drug levels and adversely affects anti-tumor efficacy. Target engagement outside the tumor environment may lead to severe immune-related adverse events (irAEs), resulting in a narrowing of the therapeutic window, sub-optimal dosing, or cessation of drug development altogether. Overcoming these challenges has become tractable through recent advances in antibody engineering and screening approaches. Here, we review the discovery and development of conditionally active antibodies with minimal binding to target at physiologic pH but high-affinity target binding at the low pH of the tumor microenvironment by focusing on the discovery and improved properties of pH-dependent mAbs targeting two T cell checkpoints, VISTA and CTLA-4.

Cite

CITATION STYLE

APA

Smith, F. D., Pierce, R. H., Thisted, T., & van der Horst, E. H. (2023, September 1). Conditionally Active, pH-Sensitive Immunoregulatory Antibodies Targeting VISTA and CTLA-4 Lead an Emerging Class of Cancer Therapeutics. Antibodies. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antib12030055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free