Factors determining the progression of frequently mild or asymptomatic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection into life-threatening pneumonia remain poorly understood. Viral and host factors involved in the development of diffuse alveolar damage have been extensively studied in influenza virus infection. Influenza is a self-limited upper respiratory tract infection that causes acute and severe systemic symptoms and its spread to the lungs is limited by CD4+ T-cell responses. A vicious cycle of CCL2- A nd CXCL2-mediated inflammatory monocyte and neutrophil infiltration and activation and resultant massive production of effector molecules including tumor necrosis factor (TNF)-α, nitric oxide, and TNF-related apoptosis-inducing ligand are involved in the pathogenesis of progressive tissue injury. SARS-CoV-2 directly infects alveolar epithelial cells and macrophages and induces foci of pulmonary lesions even in asymptomatic individuals. Mechanisms of tissue injury in SARS-CoV-2-induced pneumonia share some aspects with influenza virus infection, but IL-1β seems to play more important roles along with CCL2 and impaired type I interferon signaling might be associated with delayed virus clearance and disease severity. Further, data indicate that preexisting memory CD8+ T cells may play important roles in limiting viral spread in the lungs and prevent progression from mild to severe or critical pneumonia. However, it is also possible that T-cell responses are involved in alveolar interstitial inflammation and perhaps endothelial cell injury, the latter of which is characteristic of SARS-CoV-2-induced pathology.
CITATION STYLE
Miyazawa, M. (2020, October 12). Immunopathogenesis of SARS-CoV-2-induced pneumonia: Lessons from influenza virus infection. Inflammation and Regeneration. BioMed Central Ltd. https://doi.org/10.1186/s41232-020-00148-1
Mendeley helps you to discover research relevant for your work.