Inherited neuropathies show considerable heterogeneity in clinical manifestations and genetic etiologies, and are therefore often difficult to diagnose. Whole-exome sequencing (WES) has been widely adopted to make definite diagnosis of unclear conditions, with proven efficacy in optimizing patients' management. In this study, a large Chinese kindred segregating autosomal dominant polyneuropathy with incomplete penetrance was ascertained through a patient who was initially diagnosed as Charcot-Marie-Tooth disease. To investigate the genetic cause, forty-six living family members were genotyped by SNP microarrays, and one confirmed patient was subject to WES. Through systematic computational prioritization, we identified a missense mutation c.G148T in TTR gene which results in a p.V50L substitution known to cause transthyretin-related familial amyloid polyneuropathy. Co-segregation analysis and clinical follow-up confirmed the new diagnosis, which suggested new therapeutic options to the patients and informed high risk family members. This study confirms WES as a powerful tool in translational medicine, and further demostrates the practical utility of gene prioritization in narrowing the scope of causative mutation.
CITATION STYLE
Chen, H., Zhou, X., Wang, J., Wang, X., Liu, L., Wu, S., … Wang, B. (2016). Exome sequencing and gene prioritization correct misdiagnosis in a Chinese kindred with familial amyloid polyneuropathy. Scientific Reports, 6. https://doi.org/10.1038/srep26362
Mendeley helps you to discover research relevant for your work.