Steroid auto-regulation of the human glucocorticold receptor (hGR) 1A promoter in lymphoblast cells resides largely in two DNA elements (footprints 11 and 12). We show here that c-Myb and c-Ets family members (Ets-1/2, PU.1, and Spi-B) control hGR 1A promoter regulation in T- and B-lymphoblast cells. Two T-lymphoblast lines, CEM-C7 and Jurkat, contain high levels of c-Myb and low levels of PU.1, whereas the opposite is true in IM-9 B-lymphoblasts. In Jurkat cells, overexpression of c-Ets-1, c-Ets-2, or PU.1 effectively represses dexamethasone-mediated up-regulation of an hGR 1A promoter-luciferase reporter gene, as do dominant negative c-Myb (c-Myb DNA-binding domain) or Ets proteins (Ets-2 DNA-binding domain). Overexpression of c-Myb in IM-9 cells confers hormone-dependent up-regulation to the hGR 1A promoter reporter gene. Chromatin immunoprecipitation assays show that hormone treatment causes the recruitment of hGR and c-Myb to the hGR 1A promoter in CEM-C7 cells, whereas hGR and PU.1 are recruited to this promoter in IM-9 cells. These observations suggest that the specific transcription factor that binds to footprint 12, when hGR binds to the adjacent footprint 11, determines the direction of hGR 1A promoter auto-regulation. This leads to a "molecular switch" model for auto-regulation of the hGR 1A promoter. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Geng, C. D., & Vedeckis, W. V. (2005). c-Myb and members of the c-Ets family of transcription factors act as molecular switches to mediate opposite steroid regulation of the human glucocorticoid receptor 1A promoter. Journal of Biological Chemistry, 280(52), 43264–43271. https://doi.org/10.1074/jbc.M508245200
Mendeley helps you to discover research relevant for your work.