In recent years, graphene (CC) and hexagonal boron nitride (h-BN) have been widely used in water purification and environmental remediation because of their unique physical and chemical properties. Therefore, based on the reaction enthalpy, equilibrium structure, atomic charge, molecular, orbital and electronic spectrum provided by a semiempirical PM7 method, the adsorption of pesticides, antibiotics and microcystin-LR on graphene and hexagonal boron nitride (h-BN) nano-systems was examined. For the adsorption of diazinon, parathion, oxacillin and ciprofloxacin, the results show that as the bond length decreases and the atomic partial charge increases, the adsorption energy increases. The removal efficiency for antibiotics is higher than that for pesticides. Regarding the co-adsorption of pesticides/antibiotics and microcystin-LR on nano-systems, hydrogen bonds play a crucial role in stabilizing the whole structure. In addition, the non-covalent interaction (NCI) diagrams show the adsorption strength of the nano-systems to the pesticides/antibiotics. The energy gap and HSAB global descriptors are calculated based on the energy values of HOMO and LUMO. It is proved that the graphene nano-system has excellent electron-accepting ability, and suitable sensor materials can be designed.
CITATION STYLE
Chi, S. C., Lee, C. L., & Chang, C. M. (2022). Adsorption of Pesticides, Antibiotics and Microcystin-LR by Graphene and Hexagonal Boron Nitride Nano-Systems: A Semiempirical PM7 and Theoretical HSAB Study. Crystals, 12(8). https://doi.org/10.3390/cryst12081068
Mendeley helps you to discover research relevant for your work.