Smooth muscle cell proliferation and migration is important in arteriosclerosis. In this process, cytokines and growth factors are upregulated and bind to their respective receptors, which in turn stimulate mitogen-activated protein (MAP) kinases. MAP kinases then relay signals to the nucleus that activate quiescent smooth muscle cells. Phosphatases downregulate MAP kinases. We investigated the role of a dual-specificity tyrosine phosphatase, MAP kinase phosphatase-1 (MKP-1), in smooth muscle cell proliferation. MKP-1 expression was high in arterial tissue by Northern analysis, and MKP-1 message was detected mainly in the arterial smooth muscle layer by in situ hybridization. After balloon injury of the rat carotid artery, expression of MKP-1 decreased greatly, whereas that of MAP kinases, especially p44 MAP kinase, increased. The time course of the reduction in MKP-1 message correlated with increased tyrosine phosphorylation and elevated p44 MAP kinase enzymatic activity. In rat arterial smooth muscle cells overexpressing MKP-1, growth was arrested in the G1 phase and entry into the S phase was blocked. A reduction in MKP-1 expression may contribute in part to proliferation of smooth muscle cells after vascular injury, possibly through a decrease in dephosphorylation of p44 MAP kinase.
CITATION STYLE
Lai, K., Wang, H., Lee, W. S., Jain, M. K., Lee, M. E., & Haber, E. (1996). Mitogen-activated protein kinase phosphatase-1 in rat arterial smooth muscle cell proliferation. Journal of Clinical Investigation, 98(7), 1560–1567. https://doi.org/10.1172/JCI118949
Mendeley helps you to discover research relevant for your work.