The Tight skin mouse: Demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils

108Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Mice carrying the Tight skin (Tsk) mutation harbor a genomic duplication within the fibrillin-1 (Fbn 1) gene that results in a larger than normal in- frame Fbn 1 transcript. In this study, the consequences of the Tsk mutation for fibrillin-containing microfibrils have been examined. Dermal fibroblasts from Tsk/+ mice synthesized and secreted both normal fibrillin (~330 kD) and the mutant oversized Tsk fibrillin-1 (~450 kD) in comparable amounts, and Tsk fibrillin-1 was stably incorporated into cell layers. Immunohistochemical and ultrastructural analyses of normal and Tsk/+ mouse skin highlighted differences in the gross organization and distribution of microfibrillar arrays. Rotary shadowing of high Mr preparations from Tsk/+ skin demonstrated the presence of abundant beaded microfibrils. Some of these had normal morphology and periodicity, but others were distinguished by diffuse interbeads, longer periodicity, and tendency to aggregate. The presence of a structurally abnormal population of microfibrils in Tsk/+ skin was unequivocally demonstrated after calcium chelation and in denaturating conditions. Scanning transmission electron microscopy highlighted the presence of more mass in Tsk/+ skin microfibrils than in normal mice skin microfibrils. These data indicate that Tsk fibrillin-1 polymerizes and becomes incorporated into a discrete population of beaded micro fibrils with altered molecular organization.

Cite

CITATION STYLE

APA

Kielty, C. M., Raghunath, M., Siracusa, L. D., Sherratt, M. J., Peters, R., Shuttleworth, C. A., & Jimenez, S. A. (1998). The Tight skin mouse: Demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. Journal of Cell Biology, 140(5), 1159–1166. https://doi.org/10.1083/jcb.140.5.1159

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free