Background and Purpose - Despite a high incidence of poststroke dementia, there is no specific treatment for this condition. Because the evaluation of poststroke cognitive deficits in animal models of stroke is exceedingly challenging, the preclinical evaluation of candidate drugs is limited. We aimed to explore the impact of small cortical photothrombotic strokes on poststroke cognition, thereby assessing the suitability of this experimental stroke model for the investigation of cognitive impairment after stroke. Methods - Photothrombotic cortical infarcts were induced in 19 adult male Wistar rats. Nineteen sham-operated animals served as controls. Using the Morris water maze, we analyzed the impact of photothrombotic stroke on both the acquisition of new memories and the recall of previously acquired memories. The cylinder test, the adhesive tape removal test, and the rotarod test were performed to investigate sensorimotor deficits. Results - Photothrombotic stroke significantly impaired the recall of previously acquired memories (P<0.05), whereas the acquisition of new memories remained largely intact. The analysis of the animals' swimming speed in the water maze and the rotarod test showed no confounding motor impairments after photothrombotic stroke. The adhesive tape removal test and the cylinder test revealed mild sensorimotor deficits in lesioned animals (P<0.05). Conclusions - Photothrombotic cortical infarcts impair the recall of memories acquired before stroke, whereas the formation of new memories remains unimpaired. The observed deficits in the water maze are not confounded by disturbed motor functions. Overall, experimental photothrombotic strokes are well suited for the investigation of specific cognitive impairments after stroke. © 2013 American Heart Association, Inc.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Diederich, K., Schmidt, A., Strecker, J. K., Schäbitz, W. R., Schilling, M., & Minnerup, J. (2014). Cortical photothrombotic infarcts impair the recall of previously acquired memories but spare the formation of new ones. Stroke, 45(2), 614–618. https://doi.org/10.1161/STROKEAHA.113.001907