Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions

17Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Envelope analysis is a widely used method in fault diagnoses of rolling bearings. An optimal narrowband chosen for the envelope demodulation is critical to obtain high detection accuracy. To select the narrowband, the fast kurtogram (FK), which computes the kurtosis of a set of filtered signals, is introduced to detect cyclic transients in a signal, and the zone with the maximum kurtosis is the optimal frequency band. However, the kurtosis value is affected by rotating frequencies and is sensitive to large random impulses which normally occur in industrial applications. These factors weaken the performance of the FK for extracting weak fault features. To overcome these limitations, a novel feature named Order Spectrum Correlated Kurtosis (OSCK) is proposed, replacing the kurtosis index in the FK, to construct an improved kurtogram called Fast Order Spectrum Correlated Kurtogram (FOSCK). A band-pass filter is used to extract the optimal frequency band signal corresponding to the maximum OSCK. The envelope of the filtered signal is calculated using the Hilbert transform, and a low-pass filter is employed to eliminate the trend terms of the envelope. Then, the non-stationary filtered envelope is converted in the time domain into the stationary envelope in the angular domain via Computed Order Tracking (COT) to remove the effects of the speed fluctuation. The order structure of the angular domain envelope signal can then be used to determine the type of fault by identifying its characteristic order. This method offers several merits, such as fine order spectrum resolution and robustness to both random shock and heavy noise. Additionally, it can accurately locate the bearing fault resonance band within a relatively large speed fluctuation. The effectiveness of the proposed method is verified by a number of simulations and experimental bearing fault signals. The results are compared with several existing methods; the proposed method outperforms others in accurate bearing fault feature extraction under varying speed conditions.

Cite

CITATION STYLE

APA

Ren, Y., Li, W., Zhang, B., Zhu, Z., & Jiang, F. (2019). Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061157

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free