Machine learning-based prediction of seizure-inducing action as an adverse drug effect

3Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

During the preclinical research period of drug development, animal testing is widely used to help screen out a drug’s dangerous side effects. However, it remains difficult to predict side effects within the central nervous system. Here, we introduce a machine learning-based in vitro system designed to detect seizure-inducing side effects before clinical trial. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices that were bath-perfused with each of 14 different drugs, and at 5 different concentrations of each drug. For each of these experimental conditions, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events, and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which have indeed been reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to pre-clinically detect seizure-inducing side effects of drugs.

Cite

CITATION STYLE

APA

Gao, M., Sato, M., & Ikegaya, Y. (2018). Machine learning-based prediction of seizure-inducing action as an adverse drug effect. Yakugaku Zasshi. Pharmaceutical Society of Japan. https://doi.org/10.1248/yakushi.17-00213-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free