The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models

21Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we consider the problem of sparsifying BERT models, which are a key building block for natural language processing, in order to reduce their storage and computational cost. We introduce the Optimal BERT Surgeon (oBERT), an efficient and accurate pruning method based on approximate second-order information, which we show to yield state-of-the-art results for compression in both stages of language tasks: pre-training and fine-tuning. Specifically, oBERT extends existing work on second-order pruning by allowing for pruning blocks of weights, and is the first such method that is applicable at BERT scale. Second, we investigate compounding compression approaches to obtain highly compressed but accurate models for deployment on edge devices. These models significantly push boundaries of the current state-of-the-art sparse BERT models with respect to all metrics: model size, inference speed and task accuracy. For example, relative to the dense BERTBASE, we obtain 10x model size compression with < 1% accuracy drop, 10x CPU-inference speedup with < 2% accuracy drop, and 29x CPU-inference speedup with < 7.5% accuracy drop. Our code, fully integrated with Transformers and SparseML, is available at https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT.

Cite

CITATION STYLE

APA

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M., Fineran, B., … Alistarh, D. (2022). The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 (pp. 4163–4181). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2022.emnlp-main.279

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free