Suppressing actions is essential for flexible behavior. Multiple neural circuits involved in behavioral inhibition converge upon a key basal ganglia output nucleus, the substantia nigra pars reticulata (SNr). To examine how changes in basal ganglia output contribute to self-restraint, we recorded SNr neurons during a proactive behavioral inhibition task. Rats responded to Go! cues with rapid leftward or rightward movements, but also prepared to cancel one of these movement directions on trials when a Stop! cue might occur. This action restraint – visible as direction-selective slowing of reaction times – altered both rates and patterns of SNr spiking. Overall firing rate was elevated before the Go! cue, and this effect was driven by a subpopulation of direction-selective SNr neurons. In neural state space, this corresponded to a shift away from the restrained move-ment. SNr neurons also showed more variable inter-spike intervals during proactive inhibition. This corresponded to more variable state-space trajectories, which may slow reaction times via reduced preparation to move. These findings open new perspectives on how basal ganglia dynamiccontribute to movement preparation and cognitive control.
CITATION STYLE
Gu, B. M., & Berke, J. D. (2022). Altered basal ganglia output during self-restraint. ELife, 11. https://doi.org/10.7554/eLife.82143
Mendeley helps you to discover research relevant for your work.