Development of Machine Learning Algorithms Incorporating Electronic Health Record Data, Patient-Reported Outcomes, or Both to Predict Mortality for Outpatients With Cancer

  • Parikh R
  • Hasler J
  • Zhang Y
  • et al.
12Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.
Get full text

Abstract

PURPOSE Machine learning (ML) algorithms that incorporate routinely collected patient-reported outcomes (PROs) alongside electronic health record (EHR) variables may improve prediction of short-term mortality and facilitate earlier supportive and palliative care for patients with cancer. METHODS We trained and validated two-phase ML algorithms that incorporated standard PRO assessments alongside approximately 200 routinely collected EHR variables, among patients with medical oncology encounters at a tertiary academic oncology and a community oncology practice. RESULTS Among 12,350 patients, 5,870 (47.5%) completed PRO assessments. Compared with EHR- and PRO-only algorithms, the EHR + PRO model improved predictive performance in both tertiary oncology (EHR + PRO v EHR v PRO: area under the curve [AUC] 0.86 [0.85-0.87] v 0.82 [0.81-0.83] v 0.74 [0.74-0.74]) and community oncology (area under the curve 0.89 [0.88-0.90] v 0.86 [0.85-0.88] v 0.77 [0.76-0.79]) practices. CONCLUSION Routinely collected PROs contain added prognostic information not captured by an EHR-based ML mortality risk algorithm. Augmenting an EHR-based algorithm with PROs resulted in a more accurate and clinically relevant model, which can facilitate earlier and targeted supportive care for patients with cancer.

Cite

CITATION STYLE

APA

Parikh, R. B., Hasler, J. S., Zhang, Y., Liu, M., Chivers, C., Ferrell, W., … Chen, J. (2022). Development of Machine Learning Algorithms Incorporating Electronic Health Record Data, Patient-Reported Outcomes, or Both to Predict Mortality for Outpatients With Cancer. JCO Clinical Cancer Informatics, (6). https://doi.org/10.1200/cci.22.00073

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free