Synthesis and characterization of injectable composites of poly[D,L-lactide-co-(ε-caprolactone)] reinforced with β-TCP and CaCO3 for intervertebral disk augmentation

12Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Degeneration of the intervertebral disk constitutes one of the major causes of low back pain in adults aged 20-50 years old. In this study, injectable, in situ setting, degradable composites aimed for intervertebral disk replacement were prepared. β-TCP and calcium carbonate particles were mixed into acrylic-terminated oligo[D,L-lactide-co-(ε-caprolactone)], which were crosslinked at room temperature. The structure of the oligomers was confirmed by 1H-NMR spectroscopy. The composites were examined via SEM, and the mechanical properties of the crosslinked networks were determined. The porous β-TCP particles showed good mechanical anchorage to the matrix due to polymer penetration into the pores. In vitro degradation tests showed that the composites containing β-TCP slowly degraded, whereas the composites containing CaCO3 exhibited apatite formation capacity. It was concluded that the surface area, morphology, and solubility of the fillers might be used to control the degradation properties. The incorporation of fillers also increased both the elastic modulus and the maximum compression strength of the composites, properties that were similar to those of the physiological disk. These materials have potential for long-term intervertebral disk replacement and regenerative scaffolds because of their low degradation rates, bioactivity, and mechanical properties. © 2010 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

López, A., Persson, C., Hilborn, J., & Engqvist, H. (2010). Synthesis and characterization of injectable composites of poly[D,L-lactide-co-(ε-caprolactone)] reinforced with β-TCP and CaCO3 for intervertebral disk augmentation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 95(1), 75–83. https://doi.org/10.1002/jbm.b.31685

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free