SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-training for Spatial-Aware Visual Representations

31Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

Abstract

Pre-training has become a standard paradigm in many computer vision tasks. However, most of the methods are generally designed on the RGB image domain. Due to the discrepancy between the two-dimensional image plane and the three-dimensional space, such pre-trained models fail to perceive spatial information and serve as sub-optimal solutions for 3D-related tasks. To bridge this gap, we aim to learn a spatial-aware visual representation that can describe the three-dimensional space and is more suitable and effective for these tasks. To leverage point clouds, which are much more superior in providing spatial information compared to images, we propose a simple yet effective 2D Image and 3D Point cloud Unsupervised pre-training strategy, called SimIPU. Specifically, we develop a multi-modal contrastive learning framework that consists of an intra-modal spatial perception module to learn a spatial-aware representation from point clouds and an inter-modal feature interaction module to transfer the capability of perceiving spatial information from the point cloud encoder to the image encoder, respectively. Positive pairs for contrastive losses are established by the matching algorithm and the projection matrix. The whole framework is trained in an unsupervised end-to-end fashion. To the best of our knowledge, this is the first study to explore contrastive learning pre-training strategies for outdoor multi-modal datasets, containing paired camera images and LIDAR point clouds.

Cite

CITATION STYLE

APA

Li, Z., Chen, Z., Li, A., Fang, L., Jiang, Q., Liu, X., … Zhao, H. (2022). SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-training for Spatial-Aware Visual Representations. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022 (Vol. 36, pp. 1500–1508). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v36i2.20040

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free