Dendritic cells (DCs) are the most potent antigen-presenting cells. A strong interest has been developed in DC vaccines for cancer immunotherapy. Besides, angiogenesis is essential for tumor growth. VE-cadherin has a crucial function in various aspects of vascular biological functions. Here, we produced the full VE-cadherin gene modified DC vaccine (DC-VEC). Its antitumor immunity and chief mechanism driving antitumor effect was evaluated. Analyses were performed including test of antitumor antibody, CTL-mediated cytotoxicity experiment, vascular density, evaluation of the variation of cells and cytokines in immunoregulation. Its damage to the major organs was also evaluated. DC-VEC vaccine resulted in retarded tumor progression and prolonged survival in mice. In DC-VEC group, large amount of immunoglobulin was generated, T cells exhibited greater cytotoxicity against VE-cadherin, and tumor angiogenesis was suppressed. Besides, a decrease of VEGF-A and TGF-β1, and an increase of IL-4 and IFN-γ were observed. CD4+ and CD8+ T cells were higher, with increased IFN-γ secretion. The percentage of myeloid-derived suppressor cells and regulatory T cells decreased mildly. Also, it had no pathologic changes in major organs. DC-VEC vaccine represents a promising antitumor immunotherapy. The main mechanism is associated with its anti-angiogenesis and immunoregulation response.
CITATION STYLE
Zhou, J., Xi, Y., Mu, X., Zhao, R., Chen, H., Zhang, L., … Li, Q. (2017). Antitumor immunity induced by VE-cadherin modified DC vaccine. Oncotarget, 8(40), 67369–67379. https://doi.org/10.18632/oncotarget.18654
Mendeley helps you to discover research relevant for your work.