Photosynthetic nutrient and water use efficiency of cucumis sativus under contrasting soil nutrient and lignosulfonate levels

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

To reduce the use of commercial conventional inorganic fertilizers, the possibility of using pulp and paper industry wastes in agriculture as an alternative source of nutrients is recently under study and discussion. This work aimed to evaluate the effect of sodium lignosulfonate application to soil on photosynthetic leaf nutrient (N, P, K, Ca, Mg, Fe, Mn, and Na) and water use efficiency. A pot culture experiment was conducted with cucumber seedlings, using five lignosulfonate concentrations (0, 1, 2.5, 5, and 10 vol. %) in sandy soil under sufficient or low nutrient availability for plants. The impact of nutrient availability on the plants’ physiological traits was stronger than the lignosulfonate impact. Under sufficient nutrient availability, the lignosulfonate application resulted in decreased photosynthetic N, P, K, Ca, Mg, Fe, and Na use efficiency. Cucumber growth and development, and photosynthetic nutrient, water, and light use efficiency were significantly reduced with a nutrient deficiency. The sodium lignosulfonate application was not successful in eliminating the negative effects of nutrient deficit on cucumber seedlings.

Cite

CITATION STYLE

APA

Ikkonen, E., Chazhengina, S., & Jurkevich, M. (2021). Photosynthetic nutrient and water use efficiency of cucumis sativus under contrasting soil nutrient and lignosulfonate levels. Plants, 10(2), 1–13. https://doi.org/10.3390/plants10020340

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free