Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage

160Citations
Citations of this article
205Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles' heel of Cu surface-exposed cells. © 2012 The Authors.

Cite

CITATION STYLE

APA

Santo, C. E., Quaranta, D., & Grass, G. (2012). Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen, 1(1), 46–52. https://doi.org/10.1002/mbo3.2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free