Effect of manganese on the structure-properties relationship of cold rolled AHSS treated by a quenching and partitioning process

15Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

Abstract

The present work focuses on the investigation of both microstructure and resulting mechanical properties of different lean medium Mn Quenching and Partitioning (Q&P) steels with 0.2 wt.% C, 1.5 wt.% Si, and 3–4 wt.% Mn. By means of dilatometry, a significant influence of the Mn-content on their transformation behavior was observed. Light optical and scanning electron microscopy (LOM, SEM) was used to characterize the microstructure consisting of tempered martensite (α”), retained austenite (RA), partially bainitic ferrite (αB), and final martensite (α’final) formed during final cooling to room temperature (RT). Using the saturation magnetization measurements (SMM), a beneficial impact of the increasing Mn-content on the volume fraction of RA could be found. This remarkably determined the mechanical properties of the investigated steels, since the larger amount of RA with its lower chemical stabilization against the strain-induced martensite transformation (SIMT) highly influenced their overall stress-strain behavior. With increasing Mn-content the ultimate tensile strength (UTS) rose without considerable deterioration in total elongation (TE), leading to an enhanced combination of strength and ductility with UTS × TE exceeding 22,500 MPa%. However, for the steel grades containing an elevated Mn-content, a narrower process window was observed due to the tendency to form α’final.

Cite

CITATION STYLE

APA

Kaar, S., Krizan, D., Schneider, R., Béal, C., & Sommitsch, C. (2019). Effect of manganese on the structure-properties relationship of cold rolled AHSS treated by a quenching and partitioning process. Metals, 9(10). https://doi.org/10.3390/met9101122

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free