The constructive design in the automotive industry, but also in many other industrial sectors has changed steadily over the past decades. It became much more complex due to e.g. increased use of hybrid materials. Combined with the desire to minimize the weight of vehicles and thus the CO2 emissions, the use of low density materials and especially fiber-reinforced plastics is increasing. E.g. Continuous fiber thermoplastic composites are used to reinforce injection molded parts. Low viscosity monomers like caprolactam, which is used to produce polyamide 6 by anionic polymerization are able to easily impregnate and penetrate the textile reinforcement. After wetting the fibers, the ring-opening polymerization starts and the matrix is becoming a polymer. At IKT, a method based on the RIM process (reaction injection molding) was developed to produce continuous fiber thermoplastic composites with high contents of continuous glass fibers. The anionic polymerization of polyamide 6 was now combined with the pultrusion process. Continuous glass fibers are pulled through a mold and wetted with caprolactam (including activator and catalyst). After the material polymerized in the mould, the finished continuous fiber thermoplastic composites can be pulled out and is finally sawn off. © 2014 American Institute of Physics.
CITATION STYLE
Epple, S., & Bonten, C. (2014). Production of continuous fiber thermoplastic composites by in-situ pultrusion. In AIP Conference Proceedings (Vol. 1593, pp. 454–457). American Institute of Physics Inc. https://doi.org/10.1063/1.4873820
Mendeley helps you to discover research relevant for your work.